我的位置:

如何测量宇宙质量

发布人:蓝海商信用户推荐

  为了计算sigma-8,希尔德布兰特和同事转而研究了一种叫作弱引力透镜的效应。这种效应指的是,由于星系和地球之间也分布着少量物质,因而来自遥远星系的光在抵达望远镜的过程中,会受到这些物质的引力作用,轻微地弯曲。   当然,由此产生的扭曲程度非常微弱,几乎不会改变单个星系的形状。但是如果你计算一定范围内数以万计星系的形状的平均值,就会发现微弱的透镜效应。假设星系相对地球的方向是随机的,那么在不考虑弱透镜效应的情况下,它们的平均形状应该是近圆形。但由于这种效应导致的轻微扭曲,星系的平均形状会变成椭圆。   天文学家利用这样的信号,估计了我们与各个星系密集区域之间的物质(包括普通物质和暗物质)的含量和分布。换句话说,他们设法测量了宇宙中物质的密度。   但要做到这一点,还需要另一个信息:我们到各星系的距离。通常,天文学家通过光谱红移来计算这一距离。红移是星系发出的光的波长向光谱红光部分的偏移。红移越大,该天体距离我们越远。   然而,在处理上百万个星系时,用光谱红移逐一测量单个星系距离的方法效率极低。因此希尔德布兰特的研究小组转而选择了一种叫作测光红移的方法,即在从可见光到近红外波段的不同波段中,分别拍摄同一天区的多幅图像。研究人员利用这些图像来估计每个星系的红移。“这样得出的结果不如传统的光谱红移方法准确,”希尔德布兰特说,“但考虑到使用望远镜的时间,它的效率要高得多。”   在整个分析过程中,研究小组在9个波段(4个可见光波段和5个近红外波段)进行观测,获得了数百平方度天区(满月的直径约为0.5度)范围的高分辨率图像。他们使用两台小型望远镜对大约1500万个星系进行了观测。他们使用欧洲南方天文台在智利帕瑞纳(Paranal)天文台的两个巡天项目对大约1500万个星系进行了观测。这两个项目分别是千平方度巡天(Kilo-Degree Survey,KiDS)和VISTA千平方度红外星系巡天(VIKING)。   VIKING可以在近红外波段对同一片天区进行多次观测,从而对KiDS的数据进行补充。一个星系距离我们越远,它离我们而去的速度就越快,星系发出的光的红移就越明显,也就是说更多的光线会从可见光波段进入红外波段,因此仅仅在可见光波段进行观测是不够的。而红外测量能够捕获更多光线,从而帮助研究人员更好地估算它们的测光红移。   为了确保测光红移的计算尽可能准确,研究者还使用了帕瑞纳的8米甚大望远镜(Very Large Telescope)和夏威夷冒纳凯亚的10米凯克望远镜(Keck telescopes)对几个星系的光谱红移测量值进行了校准。   美国约翰·霍普金斯大学的天体物理学家、诺贝尔奖获得者亚当·里斯(Adam Riess)对KiDS研究人员的努力表示了认可。他说:“他们的最新结果使用了红外数据,这或将帮助我们更好地理解透镜效应,并获得更可靠的测光红移结果。”