金准产业研究 2020年全球仿生芯片发展情况研究报告

  • 6个月前发布
  • 发布人:金准数据

前言

“我们进入的新时代是生物技术时代,这将改变人类的意义。”今年2月,在风险投资公司Platform Capital组织的“非洲崛起系列”鸡尾酒会上,尼日利亚神经科学家阿加比(Agabi)激情澎湃地发表演讲。他所创立的公司Koniku研发了一种特殊的芯片Koniku Kore,将活的转基因脑细胞与传统硅融合在一起。阿加比说,该芯片通过检测人体释放的挥发性有机化合物,能检测从肺癌到新冠肺炎的一系列疾病。

不管是构成还是外观,这个形如蓝色冰冻水母的芯片都颇具科幻色彩。但从已透露的信息来看,Koniku Kore并不是纸上谈兵,它在医疗、农业、军事及机场安检等领域的落地前景,已经吸引多家知名公司的青睐。其早期的客户包括埃克森美孚、保洁、制药公司阿斯利康、全球化学品制造商巴斯夫等。近期新加坡樟宜机场也使用了Koniku的技术,用于防控新冠肺炎传播。Koniku并非个例,人脑作为自然界最复杂的结构体之一,已经启发了太多不可思议的奇妙想法。金准产业研究团队了解到刚刚过去的2020年前4个月,在将生物神经元与硅芯片结合的前沿技术领域,创新的波澜正涌动不息。

一、打破脑科学与微电子学的界限

“在已知的宇宙中,人类的大脑是最复杂的东西,它复杂得让试图解释它的简单模型可笑,让精致的模型无用。”这是杜克大学认知神经科学中心的斯科特·胡特尔被广为引用的一句名言。

图片1.png 

迄今为止,人的大脑仍是一片生长着无数未解之谜的原野,无人能窥得它的全貌。但科学家们从未停止探索人脑奥秘的脚步,不仅尝试破解生命科学的密码,在脑重大疾病研究方面有所突破,而且试图模仿已知的神经元活动,打造类脑的计算机系统。如今计算机界的“当红炸子鸡”人工智能,其广泛应用的神经网络,即是模拟人脑神经处理机制的典型代表。2016年阿尔法狗(AlphaGo)击败围棋冠军李世石的那一刻,人工智能披上新的荣光,人创造出的非生命体具备了媲美人类的“高智商”。但在能耗上,阿尔法狗输得不是一点点。据科技公司Ceva估算,AlphaGo在下棋过程中约消耗1兆瓦的电能,相当于一天约100户家庭的供电量。相比之下,包含超过1000亿个神经元的人脑,消耗的功率仅20瓦,只有AlphaGo所消耗能量的5万分之一。金准产业研究团队分析,当今人工智能(AI)芯片努力进化的两个方向,一是更快的计算速度,二是更低的功耗。如果向大脑神经元活动取经,是不是能做出兼顾高算力和低功耗的芯片?两种不同的思路开始在研发道路上激起火花:一种是将生物神经元与传统半导体结合的生物计算,另一种则是用微电子技术来模仿神经元信息处理机制的类脑计算。

二、生物计算:碳基神经元+硅基半导体

脑功能的实现依赖于神经元和突触组成的神经网络,突触起到将信息传输与记忆存储处理相结合的关键作用。受大脑启发,一些研究人员尝试建立生物神经元与硅神经元之间的连接,以推进脑机接口、超低功耗混合芯片等前沿技术的发展。今年2月底,《自然》旗下期刊《科学报告》刊登了一项由英国、瑞士、德国和意大利科学家联合推进的实验,用纳米级忆阻器模拟生物突触的基本功能,连接大鼠神经元和人工神经元,使得这些神经元通过互联网可以实现双向实时通信。“我们首次证明,芯片上的人工神经元可以与大脑神经元相连,通过使用相同的’脉冲’语言进行交流。”意大利帕多瓦大学生物医学科学系教授Stefano Vassanelli说。

图片2.png 

纳米电子突触在混合网络中连接硅和大脑神经元

这种“混合大脑”能让大脑神经网络和AI神经网络相互理解,从长远来看,Vassanelli称其想法是利用人工脉冲神经网络来恢复帕金森氏症、中风或癫痫等局部脑疾病的功能。Vassanelli指出:“一旦植入到大脑植入物中,硅脉冲神经元将充当一种神经假体,人工神经元将自适应地刺激功能失调的神经元,促进功能恢复,甚至能挽救功能丧失。”论文链接:https://www.nature.com/articles/s41598-020-58831-9#Bib1这项研究是想用人工神经元来补救出毛病的生物神经元,也有科学家将真正的生物神经元和传统硅计算系统集成在一起,试图打造突破传统芯片限制的超级计算芯片。澳大利亚初创公司Cortical Labs在今年4月宣布制造第一款混合计算机芯片,并在训练该芯片玩雅达利祖师爷级乒乓球游戏《Pong》。其官网上列举了生物计算的四个优势:流体智能、比数字电路更稳健、可扩展、功效高。(1)流体智能:生物神经网络具备自组织特性,不依赖所需知识即可解决陌生问题。(2)鲁棒性:与数字电路不同,生物网络对物理损伤具有很强的抵抗力,其适应和重组的能力可以在传统电路失效的地方维持功能。(3)可伸缩性:生物智能可以从蜻蜓扩展到人类。培养神经元不需要绝对零度的设备或昂贵的纳米级制造单元。(4)功率效率:人脑有超过十亿的神经元,能耗仅20瓦,生物计算拥有相似的高能效特性。这家创企在2019年6月成立,已从澳大利亚著名风险投资公司Blackbird Ventures获得了约61万美元的种子资金。其联合创始人兼首席执行官Hon Weong Chong是一名注册医生和软件工程师,曾就读于约翰霍普金斯大学信息学系,他基于自身丰富的经验和多学科背景,想带领团队打造出一个功能强大而功耗极低的计算系统。他们提取神经元的方式有两种:一是从小鼠胚胎中提取神经元,二是将人类皮肤细胞转换回干细胞,并诱导它们成长为人类神经元。随后这些神经元被嵌入一个特殊金属氧化物芯片顶部的培养基中,芯片包含一个由22000个微小电极组成的网格,可充当程序员与神经元之间的I/O介质。据悉其芯片处理能力少于蜻蜓大脑。金准产业研究团队认为,这种芯片最终可能成为提供各种复杂推理和概念性理解的关键,这是今天的AI无法做到的。

Cortical Labs不是唯一从事生物计算的机构。开篇提及的美国加州创企Koniku,早在2014年就已成立。2017年,Koniku首次展示由老鼠神经元构建的64神经元硅芯片Koniku Kore,据称是全球首个拥有“嗅觉”并可检测爆炸物、疾病等气味的芯片。

三、类脑计算:群雄逐鹿,硕果千结

无独有偶,今年3月,《自然-机器智能》期刊上发表了一项研究,报告了一种模拟生物嗅觉识别10种危险化学品气味的AI算法。特别的是,这一研究由英特尔神经拟态芯片Loihi提供动力。Loihi芯片在2017年首次亮相,包含128个内核、13万神经元、1.3亿突触,每个内核模拟多个逻辑神经元,具有支持多种学习模式的可扩展片上学习能力。神经拟态芯片既可以以比传统处理器更低的功耗,跑传统深度神经网络(DNN),也可以搭配充分考虑时间序列差异的脉冲神经网络(SNN)。和视觉信息不同,嗅觉信息是非结构化的,传统深度学习算法并不适用,而SNN能更好地模仿生物感知和处理的节奏,同时它也不像深度学习那样需要大量数据和参数来达到稳定状态。比如在“闻气味”这项研究中,传统解决方案学习每类气味,需要的训练样本量是Loihi芯片的3000倍以上。今年3月,英特尔还创纪录的将768颗Loihi芯片组装成拥有1亿个神经元的超级神经拟态计算系统,超过了仓鼠的大脑神经元总数。

图片3.png 

英特尔实验室神经形态计算小组的高级研究科学家Nabil Imam表示,他们的工作是“当代研究在神经科学和人工智能的十字路口一个典型例子”。相比将活神经元和半导体结合带给人的“玄幻感”,神经拟态芯片领域明显更为热闹。在这个通向未来计算的前沿研究道路上,既有英特尔、IBM、高通、三星、惠普等科技巨头,也有BrainChip、西井科技、灵汐科技、aiCTX、Numenta、General Vision、Applied Brain Research、Brain Corporation等初创公司。HRL实验室、麻省理工学院、斯坦福大学、波士顿大学、曼彻斯特大学、海德堡大学、比利时微电子研究中心、清华大学、中科院、浙江大学、复旦大学等顶尖学府和研究机构,亦在这一领域的研究中发挥着不容小觑的作用。

图片4.png 

从实现方式来看,神经拟态芯片可分为数字芯片、模拟芯片和新材料芯片。数字芯片有英特尔Loihi、IBM TrueNorth、曼彻斯特大学SpiNNaker等;模拟芯片有斯坦福大学Neurogrid、海德堡大学BrainScales以及ROLLS等;新材料芯片主要包含忆阻器(Memristor)组成的阵列,为存储与计算融合提供了器件支撑。去年4月,瑞士创企aiCTX推出全球首款纯基于事件驱动运算的视觉AI处理器DynapCNN,单芯片集成超过100万个神经元、400万可编程参数,适合实现大规模SNN。aiCTX成立于2017年,创始人兼CEO乔宁博士毕业于中科院半导体研究所,主要从事低功耗数模混合电路的设计,2012年加入苏黎世大学及苏黎世联邦理工大学的神经信息研究所INI进行类脑芯片研究,对类脑芯片有很深的理解。

澳大利亚创企BrainChip同样研发了基于事件驱动运算的神经拟态芯片。它成立于2013年,2015年9月在澳大利亚上市,2017年11月获得2150万美元Post-IPO融资,今年4月又融资312万美元。在今年2月的tinyML峰会上,BrainChip演示了其最新级神经拟态芯片Akida如何处理计算机视觉任务,证明它有两个关键特性与传统深度学习加速器(DLA)大不相同:(1)处理给定卷积神经网络(CNN),Akida的计算量比DLA少40%-60%。即是是处理像MobileNet v1等较大的CNN模型,Akida通常也无需进行片外内存访问或主机CPU通信。(2)Akida结合SNN,能直接在芯片上实时学习,且所需数据远少于传统深度神经网络。

图片5.png 

Akida SoC

日本影像应用SoC方案供应商Socionext最早于2019年6月开始与BrainChip合作开发Akida芯片。据最新消息,两家公司已将完整的Akida设计文件交给晶圆厂台积电。Akida工程样品预计在今年第三季度问世。BrainChip的AI芯片采用非多路复用的设计,号称比IBM采用多路复用设计的TrueNorth芯片速度快上数千倍。IBM早在2011年8月就率先开启类脑芯片的大门,研发出单核包含256个神经元、65536个突触的“神经拟态自适应可塑性可扩展电子芯片”原型,脑容量相当于虫脑,能处理像玩Pong游戏这样复杂的任务。2014年,IBM公布第二代TrueNorth芯片,包含4096个内核,100万个神经元、2.56亿个突触,而功耗只有65毫瓦。其长期目标是建立拥有100亿个神经元、数百兆个突触、仅消耗1KW功率、体积不到0.002立方米的芯片系统。

图片6.png 

IBM的TrueNorth芯片结构、功能、物理形态图

不过相较英特尔Loihi芯片的高调推进和IBM TrueNorth芯片的闻名遐迩,高通在2013年公布的Zeroth芯片已经好几年没有新讯了。目前全球知名的大型神经拟态计算系统,除了英特尔Loihi和IBM TrueNorth外,还有德国海德堡大学BrainScales、英国曼彻斯特大学SpiNNaker、美国斯坦福大学Neurogrid。去年8月,清华大学类脑计算研究中心施路平教授团队打造的类脑计算芯片“天机芯”登上国际知名学术期刊《自然》的封面,实现了中国在芯片和人工智能两大领域《自然》论文零的突破。天机芯集成千万级神经元突触,同时支持跑人工神经网络(ANN)和脉冲神经网络(SNN)异构融合,相比IBM TrueNorth芯片,支持更多算法,且密度提升20%,速度快10倍,带宽提高100倍,精度可调,扩展性和灵活性也更好。

图片7.png 

在清华东操场上,一辆搭载天机芯的自行车实现了自平衡、目标探测跟踪、自动避障、语音理解控制、自主决策等功能。今年3月,台湾国立清华大学(NTHU)模拟果蝇视神经功能,研发了一种存内计算AI芯片,能以超低功耗让无人飞行器(UAV)像昆虫一样实现自动避障。

同样在这个月,国际顶级学术期刊《自然》刊登了奥地利维也纳大学的一项新研究,模拟大脑对信息处理的方式,直接在图像传感器内实现了人工神经网络(ANN),将图像处理速度提升至传统技术的数千甚至上万倍。

图片8.png

 

输入信息在视觉传感器内进行计算,实现智能高效的预处理

上海AI芯片创企西井科技也涉足了神经拟态芯片的研发,参考仿生类脑处理方式,打造了嵌入式“片上学习”AI芯片DeepWell、深度学习加速器Vastwell和SNN类脑运算平台。西井科技主攻智慧港口、智慧矿场、智慧医疗等垂直应用场景的AI解决方案,是最早实现港口无人驾驶落地的AI企业。就在今年4月,西井科技完成了过亿元的新一轮融资。法国芯片公司Kalray是片上超算的开创者,2008年成立,其最新芯片Coolidge可用于加速数据中心和汽车应用中的AI。在今年年初的国际消费电子展(CES 2020)上,Kalray展示了Coolidge芯片的AI用例。金准产业研究团队认为,其自研大规模并行处理器阵列(MPPA)架构与一些神经拟态方法相似。在他看来,市场足够大,会有很多适用于不同类型架构的应用程序,他相信我们会看到更多有趣的神经拟态产品。

图片9.png 

Kalray MPPA架构

 

结语:创新是拓荒者对未来的馈赠

“在科学上,每一条道路都应该走一走,发现一条走不通的道路,就是对科学的一大贡献。”爱因斯坦曾如是说。当前,无论是将生物神经元与硅基芯片融合的混合芯片,还是模仿人脑的神经拟态芯片,距离真正的大规模商业应用还相对遥远。金准产业研究团队认为,任何涉及改变传统系统思维方式,在通往落地的道路上必然会经历市场长期的考验。每一个创新架构的诞生,未必会立即与当下应用场景相契合,但这并不代表其创新是做无用功。这些连接硅基物体和碳基生命的奇妙构想,谁能断定不是对未来技术的一瞥?

 


您可能感兴趣
美团点评宣布新任命:张川兼任广告平台负责人

搜狐科技消息,2017年5月5日美团点评通过内部邮件宣布了最新的一项人事调整:集团高级副总裁、广告平台负责人陈烨因个人及家庭原...

Linux基金会:微软是开源社区贡献第一人

由于企业初期对开源软件的态度有些敌对,即便微软近年来积极拥抱开源,并为OSS社区贡献了许多力量,很多人对其75亿美元收购GitHu...

消息称特朗普将提议大幅增加AI与量子科学研发资金

  据外媒报道,知情人士说,白宫周一将在其2021年预算提案中提议大幅增加美国政府在人工智能和量子信息科学研发方面的开支。 ...

生活百科|在衣柜里系了几根鞋带,衣柜竟然瞬间大一倍...

衣柜太小衣服太乱,收纳空间总是不够?用上家里这些废旧物品,不花钱也能让衣柜大上一倍。鞋带球鞋多余的鞋带,还能拿来当做收纳...

金准数据logo
Copyright@2016-2019 focus123.cn
版权所有 金准数据 | 京ICP备16021591号
qr

扫码下载APP