前言
近期,在防控新型冠状病毒感染的肺炎疫情斗争中,各级政府、医疗机构、科研部门和科技企业迅速行动,把以大数据等技术应用到疫情监测分析、人员管控、医疗救治、复工复产等各个方面,发挥了巨大作用,为疫情防控工作提供了强大支撑。
为了全景展现大数据与人工智能技术在此次疫情防控中的应用情况,中国信息通信研究院云计算与大数据研究所牵头联合多家单位,搜集分析了200多个案例,梳理了社会各界利用大数据及数据智能技术参与疫情防控的实践方向,分析了数据驱动的疫情防控关键环节,探讨了面临的问题与挑战,并对下一步通过大数据等新一代信息技术开展疫情防控进行了初步讨论。
一、防控中的数据与智能
1.1科技“战疫”时间线
2020年开年之际,新型冠状病毒带来的肺炎疫情汹涌而至。疫情突发性高、传染性强、扩散性广、风险性大,防控工作任务艰巨、时间紧迫、形势严峻。在这场疫情阻击战中,大数据、云计算、人工智能等快速发展的新一代信息通信技术加速与交通、医疗、教育等领域深度融合,让疫情防控的组织和执行更加高效,成为战“疫”的强有力武器。随着疫情发展,数据驱动的疫情防控在迅速展开,各企业的疫情防控应用场景不断涌现,应用范围持续拓展。
科技“抗疫”行动时间轴
1.2抗疫技术“数据”轴
通过梳理总结这些应用场景,金准产业研究团队发现“数据”可以在如下方面助力疫情防控。1)有力支持疫情防控知识传播。借助于移动互联网和智能手机,人们可以随时随地获取最新疫情动态、科学防疫知识等各种数据。各地政府通过电子政务平台、微博、公众号等定时发布最新疫情动态,各类新闻客户端、社交平台、搜索引擎、短视频平台等也积极配合疫情相关信息的发布和传播。此外,众多“互联网+医疗”平台推出了在线问诊服务,方便网友向医生咨询新冠肺炎防治相关内容,有效缓解了因疫情期间医疗资源紧张导致的就医难等问题,避免了普通病症人群涌向医院、形成聚集性交叉感染。2)迅速锁定“涉疫”人员流动轨迹。通过集成电信运营商、互联网公司、交通部门等单位的信息,大数据可以分析出人员流动轨迹。3)开展疫情发展态势预测与溯源。基于疫情高危人群相关数据,结合疫情新增确诊、疑似、死亡、治愈病例数,借助传播动力学模型、动态感染模型、回归模型等大数据分析模型和实践技术,不仅可以分析展示发病热力分布和密切接触者的风险热力分布,还可以进行疫情峰值拐点等大态势研判。利用深度学习等新兴人工智能技术,联合出行轨迹流动信息、社交信息、消费数据、暴露接触史等大量数据进行科学建模,可以根据病患确诊顺序和密切接触人员等信息定位时空碰撞点,进而推算出疾病传播路径,为传染病溯源分析提供理论依据。4)助力地方政府科学精准施策。运用大数据分析,结合算法模型对疫情的传播速度、传播趋势等进行预测,可为各地进行动态监测管理、统筹医疗物资储备、保障民生物资供应、制定交通管制政策等提供有效依据。5)推动病例诊断与疫情研究。运用大数据和人工智能等相关技术,可以有效加速新型冠状病毒宿主预测、药物筛选等数据分析和计算工作,极大提高病毒研究与攻克效率。
二、应用分析
本章梳理了数据在疫情分析展现、疫情防范管制、医疗医治增效、生活便民举措、复工复产管理等五个主要方面的应用案例。案例从互联网渠道和企业申报渠道获得,共搜集分析了200多个案例进行分析。入选的案例均已在实际应用中取得了良好的效果,在疫情防控过程中发挥了重要价值。
2.1疫情分析展现
我们每天打开手机各大新闻客户端看到的疫情数据就是疫情分析展现的典型应用。可以说,疫情相关的数据是开展疫情分析、管控等各方面的基础。因此,很多企业首先就针对各地提供的数据进行了多主体、多渠道、多维度的展现。
疫情分析展现
本节从三类服务对象角度出发,对疫情分析展现应用的价值进行探讨。1)政府支撑:从政府支撑的角度看,疫情数据分析展现的应用主要包括政府管控范围内的疫情相关信息展示、人员流动情况展示、车辆流动情况展示、疫情相关资源情况展示、物流信息展示等核心功能。通过对这些重要信息进行全方位、多角度的实时展示,支撑了政府对于疫情的防范、管理和控制。北京移动的“疫情防治人口大数据平台”自1月26日上线以来,为北京市委市政府、13个区县及相关委办局提供了包括疫情地进入用户、疫情地返回用户、外省进入用户、外省返回用户、疫情地未返回用户、非常驻用户的规模监测及分布,以及各类人群画像及分布热力图等疫情专项分析服务,对高危人群、潜在高危人群、潜在风险人群的精准疫情防御、排查、监测、宣贯全过程提供数据支撑。杭州数梦工场科技有限公司在浙江省衢州市落地了“城市大脑”项目,通过大数据分析驾驶舱,全局展现本地人员的网格分布情况,并对市内外地重点车辆进行监测、排查及监控,实现了漏报率小于1%。此外,东软、四方伟业、相数科技、和智信、朗新科技、美数信息等企业的疫情分析展现平台也为各地方的政府疫情防治和管控工作提供了有力支撑。2)公众服务:从公众服务的角度看,疫情数据分析展现的应用主要包括疫情信息展示、人流迁徙呈现、疫情专题服务、舆论检测与评价、民众信息上报与展示等核心功能,及时为公众播报疫情信息动态,并提供有效疫情防控办法。百度地图迁徙大数据平台开放查询的城市从100个扩展到了300多个,数据指标丰富,包含来源地、目的地、迁徙规模指数、迁徙规模趋势图等,甚至支持查询一个城市自春运以来迁徙目的地或来源地的排行与比例,提供全面、立体的迁徙大数据服务支撑。3)企业服务:从企业服务的角度看,多数企业通过自建或采购疫情分析与展示产品,实现企业内部疫情的有效防控和管理。航天科工网信自主搭建了企业疫情管控平台,重点关注肺炎疫情的信息实时展示、高危人群筛选、疾病辅助诊断、爱心捐赠追踪等。
2.2疫情防范管制
金准产业研究团队认为,大数据分析和展现已在很大程度上完成了数据采集和整理工作,通过更深层次的模型建立、分析挖掘等手段能够在原有基础上更大发掘数据价值。疫情防范类应用通过数据来进行识别高危人群、开展区域检测、进行市场监管等功能,为政府部门进行决策提供了支撑。
疫情防范控制
从本报告的调研结果看,能够有效支撑疫情管控的技术方案和场景应用案例占比达到46.7%,可见通过各类技术手段提升疫情管控的手段和效率,已经成为此次疫情期间占比最高的应用场景。总体来说,疫情管控的各类应用场景当中,最为重要的是高危人群监测和管控,具有此类功能的案例占比达到60.7%;其它管控手段,如区域监测(14.3%)、市场监管(3.1%)也都有一定程度应用。另一个重要结果显示,通过技术研发和应用适配形成有效的技术手段和技术方案,从而提升疫情管控的支持能力相关案例占比达到32.1%。智能外呼、图像识别、微服务快速整合、高维机器学习、知识图谱、时空数据分析、可视化展现等技术都成为有力手段。
2.3医疗医治增效
在此次抗击疫情的过程中,大数据和智能技术被充分应用到病情诊断、医学科研、医疗辅助等与医护工作直接相关的场景中,是对大数据技术的最严苛的试炼。从本报告的调研结果看,有接近17%的应用在医疗医治增效中。医治增效应用的种类包括资源对接、辅助诊断、线上问诊、科研支撑和其他(包括基于图像分析的无接触体温监测应用以及时识别高风险人群等其他应用)。其中,辅助诊断指通过AI技术辅助或加速确诊病例的判断;线上问诊指通过智能问诊服务,减轻医疗机构的诊疗压力;科研支撑指通过开放算法、模型或提供计算存储资源来提升科研效率,助力基因检测、疫苗研发等工作。具体占比如下图所示。
医疗医治应用
本节主要结合具体案例,介绍了算法算力、人工智能和智能问诊等技术在疾病研究、辅助诊断和线上问诊的具体应用。1)算法算力辅助疾病研究:从科研的角度来看,人工智能、大数据等技术正在病毒结构分析、疫苗研发中崭露头角。1月30日,百度研究院向各基因检测机构、防疫中心及全世界科学研究中心免费开放线性时间算法Linear Fold,以及世界上现有最快的RNA结构预测网站。Linear Fold算法可将此次新型冠状病毒的全基因组二级结构预测从经典算法的55分钟缩短至27秒,提速120倍,能够节省两个数量级的等待时间,极大提升科研工作效率,助力疫情防控。2)人工智能加速疾病诊断:从诊断支持的角度来看,大量的人工智能技术被运用到病情诊断的过程中,以辅助判断病情、缩短确诊时间。2月1日,浙江省疾控中心上线自动化了全基因组检测分析平台,该平台利用阿里达摩院研发的AI算法,有效缩短疑似病例基因分析时间,并能精准检测出病毒的变异情况。此外,科大讯飞的智医助理为其覆盖的省内基层门诊病历提供在线分析能力,以发热、咳嗽、呼吸困难、流行病学史(武汉相关史)、影像学、血常规六个维度进行病历内容挖掘分析,筛选出潜在患者,为安徽省卫健委提供决策参考。3)智能问诊供需对接助力后勤保障:从医疗辅助的角度来看,大数据技术更是被运用到了减轻医院压力、减少人群聚集、整合医疗救护资源等多个方面。阿里和京东均推出了疫情服务机器人,能够向用户提供急需的线上问诊、疫情知识普及等服务,减少医护人员工作量,降低医院门诊压力。
2.4生活便民举措
生活服务类应用也是数据驱动疫情防控的重点突破口。诸多互联网企业采用O2O服务模式,形成线下活动到线上活动的映射,利用大数据技术实现海量生活数据的采集、分类和存储,为居民提供食品无接触外送、实时疫情地图、互联网医疗等服务,在便利居民正常生活的同时,确保各类服务的健康安全。1)电商平台保障饮食便捷安全:受新冠疫情的影响,线上买菜相较于线下买菜可以降低交叉传染的风险,因而更受欢迎。生鲜电商协同各方打通农产品上行通道,加大商品供给,让居民的“菜篮子”更稳当。电商平台包括盒马生鲜、叮咚买菜、每日优鲜、美团买菜、天猫超市、永辉买菜、京东到家等,多数平台根据距离所在地区的远近优选超市门店,并提供全天配送服务。据统计,在商品丰富程度方面,半数以上平台在不同门店的商品丰富程度有所浮动;在配送时长方面,80%以上的平台可以满足2小时以内完成配送;在无接触配送方面,所有平台均提供无接触配送服务,降低了面对面接触带来的交叉感染风险;在预约配送方面,受限于物资紧缺和运力有限,所有平台在疫情前期提供预约配送服务,但随着物资和运力紧张程度逐渐缓解,30%左右的平台逐渐实现“即买即送”服务。同时,为确保配送事物的安全,多家平台将“无接触配送”升级为“无接触安心送”。2)地图应用平台保障出行安全:自新冠疫情发生以来,手握大数据资源的多家地图应用平台都迅速推出利于疫情防控的出行指南,以满足用户特殊时期的出行需求。统计显示,80%以上的平台具备“疫情地图展示”、“发热门诊查询”、“同乘信息查询”等功能,部分平台提供“各国入境最新政策”等功能。百度地图于2月6日上线“疫情小区”专题地图,截止2月12日,覆盖200余个城市及乡镇。在“疫情小区”板块,输入所在小区名称,即可提供周边疫情提示,包括本市已公布的疫情发病场所、距离最近的疫情发病场所,以及周围的人流聚集地。
随着复工人数的增加,作为主要通勤交通工具之一的地铁,在同行乘客过多的情况下,交叉传染的风险将会增加。百度地图也与北京市交通委取得合作,上线地铁客流量查询服务,方便用户通过百度地图随时查看地铁车厢的拥挤程度,为安全出行提供有效参考。高德地图于2月12日上线部分城市地图客流满载情况查询功能,有效区分拥挤程度,方便居民掌握地铁站线的实时客流满载情况,并选择合适的出行方式。3)互联网医疗方便居民就医:在疫情就医领域,国内多家互联网医疗服务平台充分利用5G等信息通信技术,联动全国各地的医生、专家开展线上咨询、线上问诊、健康科普、心理援助辅导等,为百姓在家就医提供便利,让信息技术在疫情防控中“智慧相助”。
2.5复工复产管理
受突发疫情波及,餐饮住宿、文化娱乐、交通运输等行业运行放缓甚至停顿,从业人员待岗时间拉长,相关上下游产业也相继受到波及。随着疫情防控取得积极进展,各地政府、企业也在逐步将精力放在复工复产上,尽快实现经济社会常态化运行。从本报告的调查结果看,企业案例主要围绕政府、企业、学校的复产复工复学,以及协助政府开展复工后城市疫情防控各项工作,如下图所示:
复产复工应用
1)通信大数据行程卡提供地理位置查询:随着返程高峰来临之际,预防人员流动带来的交叉感染,是现阶段各地方、各单位防疫工作重点。为了简单、快速、权威、准确地证明自己过往14天内的行程信息,中国信息通信研究院联合三家基础电信企业利用电信大数据,推出“通信大数据通行卡”服务,为全国16亿手机用户免费提供其本人前14天内到访地服务。用户扫描二维码输入手机号即可实现跨运营商一站查询,操作方便快捷,无需安装软件。可帮助各地方、各单位及时识别外来及返工人员带来的风险,方便政府精准施策,帮助各地科学、高效安排复工复产工作。通信大数据行程卡已于2月29日下午上线,截至3月1日晚,已累计提供53577次查询。2)健康码助力城市有序复工复产:当前,多地通过数字化管理措施研判疫情期间返工返学返岗形势,并针对重点区域、重点场所采取分级分类管控,从而助力分类有序复工复产。例如,杭州深圳相继上线“健康码”开展疫情期间的社区管理及交通出行等工作,市民或者返工返岗人员通过支付宝、微信平台自主申报获取健康码,作为个人在本地区出入通行的一个电子凭证,实现一次申报、全市通用,公共场所也针对健康码对人员进行分类分级管理。3)远程办公完成政企学异地协同运转:从复工复产的角度来看,远程办公和人员信息上报是主要的两个方向。百度公司宣布“百度Hi企业智能远程办公平台”于2月11日对外开放,并将免费为湖北等疫区企业提供高清音视频会议、企业云盘、企业IM和应用中心平台等多项服务,满足疫情期间不断增长的远程办公需求,支持企业快速恢复生产能力,减少疫情对于企业和社会经济的影响。4)大数据精准保障企业增产扩能:国家电网也通过电力大数据对城市复工复产情况进行分析预测。以国网浙江电力为例,其根据用电信息采集系统中企业历史用电量情况、当日用电量情况等数据,动态监测、精准分析各区域、各行业由点及面的复工复产情况。
三、深度洞察
3.1数据能力是疫情防控的基础
良好和丰富的数据是开展疫情防控应用的基础。本节从数据采集、数据互通和数据开放三个方面,对本报告收集到的相关案例中体现出来的数据能力进行分析。1)数据采集:传统数据采集方式在大数据量面前暴露出了一些弊端。传统卫生数据的采集起点通常是基层的社区卫生中心,通过社区人员手工填报,经历区卫健委、市卫健委,最终汇集至省卫健委和国家卫健委。这一方面增加了基层数据采集工作人员的负担,降低了数据汇集的效率,另一方面难以在数据源头快速核验数据的正确性,增加了后期数据质量管理的成本。借助信息化,目前已有多地采用在线信息填报系统和智能外呼平台代替手工填报,力求减少数据采集人力成本,缩短数据流转过程。北京于2月13日上线的“京心相助”服务,居民可在支付宝上登记个人信息,在不更换社区的情况下,市民无需反复进行个人信息申报,但需进行每日健康打卡2。同时,百度、阿里、北京来也网络等企业推出了针对疫情防控的智能外呼平台,在自动询问居民包括离返京情况、身体状况等问题后,系统将根据关键词自行归纳信息档案,快速实现辖区内居民疫情数据的采集。除此之外,企业和个人也采用爬虫技术采集动态数据,以快速提供包括疫情数据可视化、疫情态势分析、疫情推演等服务。数据采集技术的主要使用对象和优劣下表所示。
数据采集技术对比
为保障数据采集的全面和准确性,应同步采用自动化采集工具和数据质量核验等手段,对于多源头数据应明确主要来源,从对应系统或平台中抓取,减少自报数据和重复采集。同时,充分利用大数据技术,实现各类疫情信息的快速实时采集。通过提供ETL、API、消息队列、数据流等多种采集手段,提供移动端报表采集功能,确保实时准确获取包括人口流动信息、交通实时信息、重点防控人员定位信息、物流信息、网络舆情信息等多类数据,满足疫情特殊时期下的数据资源需求。2)数据开放:自新型冠状病毒肺炎爆发以来,面对公众对疫情数据的迫切需求,我国不少地方政府部门及时开放了疫情相关的数据。这不仅有利于消除公众的恐慌情绪,提高自我防护意识,配合政府防控措施,提升政府公信力,也为社会市场和社会上的专业组织和个人的疫情数据分析提供源源不断的“燃料”。
但是,数据互通仍面临诸多障碍,如尚未建立有效的数据互通机制,无法在较短的时间内明确数据互通的需求和范围,相关技术由于存在接口和规则壁垒,也难以支撑大数据量的快速联通。因此,各地政府在未来应明确数据互通的需求,建立资源对接和调度机制,确定满足需求应配备的资源,集成已有IT系统的数据能力,消除数据互通各环节的技术壁垒。此外,加大政企间数据合作,使原本割裂分散在公共出行、社交媒体、电信服务等领域,与疫情防控相关的数据深度融合并有效使用,在复工复学后更加复杂的防控形势下,应用于减少二代感染者、阻断三代感染者等方面。同时,充分利用社交媒体和民间组织所拥有的大量疫情相关数据,通过与其他哨点监测数据、传统的公共卫生数据资源相结合,通过大数据技术和AI,深入挖掘并识别出诱因。
3.2数据分析的深度逐渐递进加深
数据分析应用的深度一般会从其操作难度和产出价值等方面进行评估,在业界通常被分为四种类型:描述性分析(Descriptive):这类分析仅描述发生了什么。一般会通过可视化的方式呈现所传达的信息,比如大屏展示的疫情分布信息;诊断性分析(Diagnostic):这类分析会追溯事件发生的原因。一般会基于描述性的信息进一步分析问题的本源,比如病毒传染的溯源;预测性分析(Predictive):这类分析会预测可能发生的事件。需要对可变数据进行建模,并通过预测模型预测发生事件的可能性,比如对疫情发展态势的预测;决策性分析(Prescriptive):这类分析能够指导下一步的决策。其复杂性和价值都相对较高,通常依赖描述、诊断、预测等多种分析行为的组合来判断最佳的方案,比如地方政府综合地方实情和周边疫情发展态势等多项因素后进行精准施策。此次抗疫期间,数据应用主要呈现出以下特点:疫情控制早期,是打好数据基础的关键时期。此时涌现的大部分应用多为信息收集和平台建设类项目,如各类自填报系统和大数据平台的建设。由于时间和数据量等方面的限制,2020年2月前的数据应用,60%以上属于初步的描述性应用,如疫情分布地图、人员流动展现等。出现较少部分诊断类的应用,多为病毒传染溯源分析以及结合人员流动的时空属性进行的高危人群判断等。例如航空和铁路部门在疫情初期发现确诊患者后会通知同航班和同车次的旅客进行重点关注和隔离。随着平台的建设和数据的逐步积累,诊断类应用愈发成熟,预测类应用逐步增加。
3.3科技企业展现技术“抗疫”硬实力
1)大数据价值尽显:“人传人”的疫情特征,将对于人类个体的监测与管控推到了核心地位,如何获取、描述和分析一个人的行为轨迹,及多人之间的位置重叠也就成为了最基础和最重要的分析数据。因此,无论是手机信令数据还是互联网APP所获取的位置数据都成为了重要的数据资源,众多电信企业和互联网企业也是基于此类数据开发了相应的产品。其中,由于实名制手机的改革,电信大数据的全面性、真实性和实时性就充分体现了其数据价值。电信大数据来自于电信运营过程中的通信基础数据,运用电信大数据分析,统计人员流动情况,对支撑服务疫情态势研判、疫情防控部署以及对流动人员的疫情监测、精准施策有重要意义。电信数据具有以下特点:一是全面性。我国拥有16亿手机用户,电信用户规模大、覆盖面广、数据量大,如现有的公众通信网每日产生的电信数据约数千亿条,在春运等节假日期间、人员流动性高的情况下,数据量会更大。二是真实性。电信大数据经过多年的实名制认证,已经基本可以达到一个号码对应一个人,通过基站信令数据对于人员位置的确定及身份的确定可靠性和真实性程度大大增加,为各类疫情数据分析奠定了有力的真实数据基础。三是实时性。可以实时采集、汇总和处理电信相关数据,及时提供各类数据分析结果,为疫情防控提供精细化数据支持。对于人员动态流动情况,分析预测确诊、疑似患者及密切接触人员等重点人群的动态流动情况,支撑疫情防控部署。北京移动作为北京地区最大的移动通信用户运营商,拥有大量真实的用户数据,在遵照国家法律和行业规范的前提下,北京移动大数据中心上线了疫情防控整体解决方案。其中,防疫平台平台实现对信令数据的统一采集和实时处理,通过本地用户和外省地区间漫游数据的融合,更全面地了解全国涉疫人员流动信息,实现全轨迹链的还原分析。借助电信数据实名制并与自然人强关联特征,大大提高了防疫数据时效性。通过不间断手机数据的获取,建立自然人与地理空间及行为特征的深度联系,每日深入洞察重点区域人流情况,按日进行数据精细对比分析。2)响应能力快速高效:新冠疫情如排山倒海般来势汹汹,面对如此紧急的突发事件,科技企业的快速应变能力成为了硬实力。从系统总线到面向服务思想,从模块化、松耦合到中台和微服务,技术的革新总是向着高效、敏捷的方向发展,这也正是解决快速应变需求的最重要手段。无论是百度地图从100个城市到300个城市的迁徙大数据平台几乎无时延升级,还是阿里云宜搭平台将后台不可见的为微服务模块变成了前台的可拖拽操作,亦或是电信运营商依托长期的数据和服务积累迅速形成疫情大数据方案,这背后都是快速响应能力的重要体现。3)智能化技术能力不断提升:大数据同人工智能技术相辅相成,共同提升人类智能化技术水平,智能化的方法和设备不断发展,辅助人类更多更好的完成任务已经成为了今后发展的重要方向。疫情期间,AI智能化测温系设备、智能化机器人、智能无人车、智能化算法模型、智能化应用和智能化展示等技术帮助我们完成了更多人类不可能自己完成的事情。智能化需求不断增加和智能化技术的不断革新也催生了智能化经济发展。数字经济在经历了PC的发明与普及、PC互联网、移动互联网这三个阶段后,正在进化到以人工智能为核心驱动力的智能经济新阶段。智能经济将给全球经济带来新的活力,是拉动全球经济重新向上的核心引擎。纵观此次疫情到目前进程,以百度为代表的中国科技公司通过充分激活AI技术潜力,在疫情分析与防范、医疗、复工复产等方面抗击疫情。其中AI测温系统、百度地图迁徙大数据平台等应用让人印象深刻。相关AI技术应用或在疫情结束后寻找到合适的商业落地场景,体现了智能化对于社会、经济发展的推动作用。
综上所述,开源项目在这次疫情防护中表现出了独特的优势和特点。开源项目的运行管理使得大规模的社会化协作成为了可能,让普通民众和有专业技能的人员参与到疫情防护的工作中。开源项目可以在短时间内迅速的组织有效力量,快速搭建各类信息平台,其响应速度和迭代效率均高于常规的委托式的项目开发。开源项目的顺畅运行需要有一套协作流程和激励机制,通常涉及分工、协作规范和工具使用,其民主化的协调方式和决策机制调动了参与者的参与积极性。从协作的工具来看,主要分为代码托管、数据和信息采集汇聚、日常沟通等工具,这些分工协作的工具有效提升了分布式工作的效率,为远程在线合作提供了有力的保障。
从数据和信息来源来看,开源项目主要源依赖于网上的公开信息和志愿者的自发贡献,一般通过人工或机器来收集数据,面对人工收集和贡献的信息,还需要引入审核的机制来核验信息的有效性和真实性。通过实际项目的运行观察,这次开源项目发挥的作用和影响力都是巨大的,在疫情信息的展现和可视化、医院对物资的需求发布、记录媒体报道和个人生活等方面涌现出大量的应用,开源项目的信息和代码都遵循一定的开源协议开放给社会,大大提升利用率。
结语
金准产业研究团队认为,这次疫情是对我国治理体系和能力的一次大考。疫情防控既是对治理的重大挑战,也是优化治理体系、提升治理能力的重要契机。可以看出,疫情防控为各种数字技术的应用提供了更多的场景,数据与智能应用在这场没有硝烟的战争中正在发挥关键的作用。我们既要抓住此次机会,充分发挥大数据、人工智能技术的优势来战胜疫情,也要及时发现技术或政策上的不足,以便做出调整改善。